Introduction

One of the features of DataFrames.jl that I often find useful is that when you group a data frame by some of its columns the resulting GroupedDataFrame is an object that gains new and useful functionalities.

Some time ago I have discussed how GroupedDataFrame can be filtered. You can find this post here. In this post and the following one that I plan to write next week I thought that it would be useful to review other key functionalities of a GroupedDataFrame.

The post was written under Julia 1.10.1 and DataFrames.jl 1.6.1.

Creating a grouped data frame

You can create a GroupedDataFrame using the groupby function.

Here are some examples:

julia> using DataFrames

julia> df = DataFrame(int=[1, 3, 2, 1, 3, 2],
                      str=["a", "a", "c", "c", "b", "b"])
6×2 DataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     3  a
   3 │     2  c
   4 │     1  c
   5 │     3  b
   6 │     2  b

julia> show(groupby(df, :int), allgroups=true)
GroupedDataFrame with 3 groups based on key: int
Group 1 (2 rows): int = 1
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
Group 2 (2 rows): int = 2
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     2  b
Group 3 (2 rows): int = 3
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  a
   2 │     3  b
julia> show(groupby(df, :int; sort=true), allgroups=true)
GroupedDataFrame with 3 groups based on key: int
Group 1 (2 rows): int = 1
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
Group 2 (2 rows): int = 2
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     2  b
Group 3 (2 rows): int = 3
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  a
   2 │     3  b
julia> show(groupby(df, :int; sort=false), allgroups=true)
GroupedDataFrame with 3 groups based on key: int
Group 1 (2 rows): int = 1
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
Group 2 (2 rows): int = 3
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  a
   2 │     3  b
Group 3 (2 rows): int = 2
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     2  b
julia> show(groupby(df, :str), allgroups=true)
GroupedDataFrame with 3 groups based on key: str
Group 1 (2 rows): str = "a"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     3  a
Group 2 (2 rows): str = "c"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     1  c
Group 3 (2 rows): str = "b"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  b
   2 │     2  b
julia> show(groupby(df, :str; sort=true), allgroups=true)
GroupedDataFrame with 3 groups based on key: str
Group 1 (2 rows): str = "a"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     3  a
Group 2 (2 rows): str = "b"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  b
   2 │     2  b
Group 3 (2 rows): str = "c"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     1  c
julia> show(groupby(df, :str; sort=false), allgroups=true)
GroupedDataFrame with 3 groups based on key: str
Group 1 (2 rows): str = "a"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     3  a
Group 2 (2 rows): str = "c"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     1  c
Group 3 (2 rows): str = "b"
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  b
   2 │     2  b

What this example shows is that the key thing you need to remember to decide about a grouped data frame is the order of groups.

There are two options here:

  • groups sorted by the grouping column value, when you pass sort=true;
  • groups sorted by the order of appearance of values in the source, when you pass sort=false.

You might ask what happens if you do not pass the sort keyword argument? In this case either of the options is used depending on which one is faster. Therefore, omitting sort, can be thought of as an information that the user does not care about the order of groups but wants the grouping operation to be as fast as possible.

When does the order of groups not matter?

In some cases the order of groups is irrelevant (so you can safely skip passing it). The most important scenario of this kind is when you use the select or transform function with a GroupedDataFrame. The reason is that these functions anyway always keep the order of rows from the source data frame (no matter how the groups are rearranged in a GroupedDataFrame). However, it is not the case with combine, as it respects the order of groups in a GroupedDataFrame.

Let us see an example highlighting the difference between these cases:

julia> select(groupby(df, :int, sort=true), :str)
6×2 DataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     3  a
   3 │     2  c
   4 │     1  c
   5 │     3  b
   6 │     2  b

julia> combine(groupby(df, :int, sort=true), :str)
6×2 DataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
   3 │     2  c
   4 │     2  b
   5 │     3  a
   6 │     3  b

julia> select(groupby(df, :int, sort=false), :str)
6×2 DataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     3  a
   3 │     2  c
   4 │     1  c
   5 │     3  b
   6 │     2  b

julia> combine(groupby(df, :int, sort=false), :str)
6×2 DataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
   3 │     3  a
   4 │     3  b
   5 │     2  c
   6 │     2  b

As you can see select kept the rows in the order in which they are present in df no matter if we passed sort=true or sort=false. On the other hand combine returns rows grouped by the groups and the order of groups corresponds to their order in GroupedDataFrame, so passing sort=true or sort=false in general changes.

Special operation specification syntax for working with grouped data frames

When discussing select or combine in conjunction with GroupedDataFrame it is important to mention that there are four special cases of operation specification syntax designed specifically for working with them. They are:

  • nrow to compute the number of rows in each group.
  • proprow to compute the proportion of rows in each group.
  • eachindex to return a vector holding the number of each row within each group.
  • groupindices to return the group number.

Each of them optionally allows you to specify the name of the target column by => syntax. Here are some examples:

julia> combine(groupby(df, :int, sort=false), nrow)
3×2 DataFrame
 Row │ int    nrow
     │ Int64  Int64
─────┼──────────────
   1 │     1      2
   2 │     3      2
   3 │     2      2

julia> combine(groupby(df, :int, sort=false), proprow => "row %")
3×2 DataFrame
 Row │ int    row %
     │ Int64  Float64
─────┼─────────────────
   1 │     1  0.333333
   2 │     3  0.333333
   3 │     2  0.333333

julia> combine(groupby(df, :int, sort=false), eachindex)
6×2 DataFrame
 Row │ int    eachindex
     │ Int64  Int64
─────┼──────────────────
   1 │     1          1
   2 │     1          2
   3 │     3          1
   4 │     3          2
   5 │     2          1
   6 │     2          2

julia> combine(groupby(df, :int, sort=false), groupindices => "group #")
3×2 DataFrame
 Row │ int    group #
     │ Int64  Int64
─────┼────────────────
   1 │     1        1
   2 │     3        2
   3 │     2        3

Iterating a grouped data frame

Apart from using functions such as select or combine on a GroupedDataFrame it is useful to know that it supports iteration. Therefore you can use a GroupedDataFrame in a loop or in a comprehension. When iterated GroupedDataFrame returns data frames corresponding to the groups. Let us see:

julia> for v in groupby(df, :int, sort=false)
           println(v)
       end
2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  a
   2 │     3  b
2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     2  b

julia> [v for v in groupby(df, :int, sort=false)]
3-element Vector{SubDataFrame{DataFrame, DataFrames.Index, Vector{Int64}}}:
 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  a
   2 │     3  b
 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     2  b

julia> collect(groupby(df, :int, sort=false))
3-element Vector{Any}:
 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  a
   2 │     3  b
 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     2  b

The last example has shown you that you can pass a GroupedDataFrame to a function expecting an iterable, in this case the collect function. The one exception to this rule is that you cannot use GroupedDataFrame with the map function directly:

julia> map(identity, groupby(df, :int, sort=false))
ERROR: ArgumentError: using map over `GroupedDataFrame`s is reserved

The reason is that it was not clear if such operation should produce a vector or a data frame, and it is easy enough to achieve both results with other means. If you want e vector use e.g. a comprehension. If you want a data frame use e.g. combine or select.

Advanced iteration

Sometimes, when iterating a GroupedDataFrame we might be interested not only in a data frame per group, but also in a value of grouping variable. This is easily achieved with the keys and pairs functions (depending on whether you only want grouping values or both grouping values and data frames):

julia> map(identity, keys(groupby(df, :int, sort=false)))
3-element Vector{DataFrames.GroupKey{GroupedDataFrame{DataFrame}}}:
 GroupKey: (int = 1,)
 GroupKey: (int = 3,)
 GroupKey: (int = 2,)

julia> map(identity, pairs(groupby(df, :int, sort=false)))
3-element Vector{Pair{DataFrames.GroupKey{GroupedDataFrame{DataFrame}}, SubDataFrame{DataFrame, DataFrames.Index, Vector{Int64}}}}:
 GroupKey: (int = 1,) => 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     1  a
   2 │     1  c
 GroupKey: (int = 3,) => 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     3  a
   2 │     3  b
 GroupKey: (int = 2,) => 2×2 SubDataFrame
 Row │ int    str
     │ Int64  String
─────┼───────────────
   1 │     2  c
   2 │     2  b

I used the map function to show you that it is only reserved to use it with plain GroupedDataFrame.

Working with group keys

As you can see in this example each group in a GroupedDataFrame is associated with a GroupKey. To get all keys use the keys function:

julia> keys(groupby(df, :int, sort=false))
3-element DataFrames.GroupKeys{GroupedDataFrame{DataFrame}}:
 GroupKey: (int = 1,)
 GroupKey: (int = 3,)
 GroupKey: (int = 2,)

Let us, as an example extract the last key so see how one can work with it:

julia> key = last(keys(groupby(df, :int, sort=false)))
GroupKey: (int = 2,)

You can get a value of the key by property access or indexing:

julia> key.int
2

julia> key[1]
2

julia> key["int"]
2

julia> key[:int]
2

It is also easy co convert GroupKey to a dictionary, vector, Tuple or NamedTuple if you would need it:

julia> Dict(key)
Dict{Symbol, Int64} with 1 entry:
  :int => 2

julia> collect(key)
1-element Vector{Int64}:
 2

julia> Tuple(key)
(2,)

julia> NamedTuple(key)
(int = 2,)

Note that, in general, you can group a data frame by multiple columns so you could query value of any grouping column in the examples above. If you needed to get a list of grouping columns use the groupcols function:

julia> groupcols(groupby(df, :int, sort=false))
1-element Vector{Symbol}:
 :int

Conclusions

In this post we have learned how one can create a grouped data frame and how to choose the order of groups in it. As a follow-up we have shown how GroupedDataFrame interacts with functions like select or combine. Next we discussed iterator interface support by GroupedDataFrame and how to get and use information about values of grouping columns for each group. I hope you found these examples useful.

In the post next week we will discuss how GroupedDataFrame supports the indexing interface.