Introduction

Broadcasting, a.k.a. the . operator, is a powerful feature of Julia that allows you to easily vectorize any function. Today I want to write about some common broadcasting patterns that can be used in DataFrames.jl.

The post was written under Julia 1.9.2 and DataFrames.jl 1.5.0.

Conditional replacement of values in a data frame

Let us create a data frame with some random contents:

julia> using DataFrames

julia> using Random

julia> df = DataFrame(rand(5, 6), :auto)
5×6 DataFrame
 Row │ x1         x2         x3         x4        x5        x6
     │ Float64    Float64    Float64    Float64   Float64   Float64
─────┼─────────────────────────────────────────────────────────────────
   1 │ 0.364225   0.690894   0.240867   0.720774  0.331573  0.549766
   2 │ 0.225226   0.241412   0.0793279  0.418206  0.775367  0.35275
   3 │ 0.19913    0.0633375  0.767805   0.280096  0.721995  0.917259
   4 │ 0.708132   0.230088   0.702677   0.947402  0.928979  0.66101
   5 │ 0.0267573  0.0122425  0.549734   0.331788  0.32658   0.00476749

Assume we want to get a new data frame that has true when the value stored in the cell is greater than 0.5 and false otherwise. This is easy. We just broadcast the > operator:

julia> df .> 0.5
5×6 DataFrame
 Row │ x1     x2     x3     x4     x5     x6
     │ Bool   Bool   Bool   Bool   Bool   Bool
─────┼──────────────────────────────────────────
   1 │ false   true  false   true  false   true
   2 │ false  false  false  false   true  false
   3 │ false  false   true  false   true   true
   4 │  true  false   true   true   true   true
   5 │ false  false   true  false  false  false

Now assume we want to replace all values greater than 0.5 with 0.5 and keep the lower values untouched. This can be done with ifelse:

julia> ifelse.(df .> 0.5, 0.5, df)
5×6 DataFrame
 Row │ x1         x2         x3         x4        x5        x6
     │ Float64    Float64    Float64    Float64   Float64   Float64
─────┼─────────────────────────────────────────────────────────────────
   1 │ 0.364225   0.5        0.240867   0.5       0.331573  0.5
   2 │ 0.225226   0.241412   0.0793279  0.418206  0.5       0.35275
   3 │ 0.19913    0.0633375  0.5        0.280096  0.5       0.5
   4 │ 0.5        0.230088   0.5        0.5       0.5       0.5
   5 │ 0.0267573  0.0122425  0.5        0.331788  0.32658   0.00476749

Or with clamp:

julia> clamp.(df, -Inf, 0.5)
5×6 DataFrame
 Row │ x1         x2         x3         x4        x5        x6
     │ Float64    Float64    Float64    Float64   Float64   Float64
─────┼─────────────────────────────────────────────────────────────────
   1 │ 0.364225   0.5        0.240867   0.5       0.331573  0.5
   2 │ 0.225226   0.241412   0.0793279  0.418206  0.5       0.35275
   3 │ 0.19913    0.0633375  0.5        0.280096  0.5       0.5
   4 │ 0.5        0.230088   0.5        0.5       0.5       0.5
   5 │ 0.0267573  0.0122425  0.5        0.331788  0.32658   0.00476749

Similarly we could clamp values to the [0.1, 0.9] interval:

julia> clamp.(df, 0.1, 0.9)
5×6 DataFrame
 Row │ x1        x2        x3        x4        x5        x6
     │ Float64   Float64   Float64   Float64   Float64   Float64
─────┼────────────────────────────────────────────────────────────
   1 │ 0.364225  0.690894  0.240867  0.720774  0.331573  0.549766
   2 │ 0.225226  0.241412  0.1       0.418206  0.775367  0.35275
   3 │ 0.19913   0.1       0.767805  0.280096  0.721995  0.9
   4 │ 0.708132  0.230088  0.702677  0.9       0.9       0.66101
   5 │ 0.1       0.1       0.549734  0.331788  0.32658   0.1

Importantly, we do not need to keep the element type of the source column fixed. Assume that we want to set values greater than 0.5 to missing:

julia> ifelse.(df .> 0.5, missing, df)
5×6 DataFrame
 Row │ x1               x2               x3               x4              x5              x6
     │ Float64?         Float64?         Float64?         Float64?        Float64?        Float64?
─────┼─────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │       0.364225   missing                0.240867   missing               0.331573  missing
   2 │       0.225226         0.241412         0.0793279        0.418206  missing               0.35275
   3 │       0.19913          0.0633375  missing                0.280096  missing         missing
   4 │ missing                0.230088   missing          missing         missing         missing
   5 │       0.0267573        0.0122425  missing                0.331788        0.32658         0.00476749

Note that the operation performed an automatic promotion of column element types.

As a final operation consider taking sign(log(x) + 1) on our data frame:

julia> sign.(log.(df) .+ 1)
5×6 DataFrame
 Row │ x1       x2       x3       x4       x5       x6
     │ Float64  Float64  Float64  Float64  Float64  Float64
─────┼──────────────────────────────────────────────────────
   1 │    -1.0      1.0     -1.0      1.0     -1.0      1.0
   2 │    -1.0     -1.0     -1.0      1.0      1.0     -1.0
   3 │    -1.0     -1.0      1.0     -1.0      1.0      1.0
   4 │     1.0     -1.0      1.0      1.0      1.0      1.0
   5 │    -1.0     -1.0      1.0     -1.0     -1.0     -1.0

Again - things are easy and intuitive. Data frame behaves just like a matrix in all operations.

I hope now you are comfortable with creation of a new data frame using broadcasting.

We can turn to in-place operations on a data frame.

In-place update of values in a data frame

In general it is enough to just put data frame on a right hand side of a broadcasted assignment operator to update it in-place:

julia> df2 = copy(df)
5×6 DataFrame
 Row │ x1         x2         x3         x4        x5        x6
     │ Float64    Float64    Float64    Float64   Float64   Float64
─────┼─────────────────────────────────────────────────────────────────
   1 │ 0.364225   0.690894   0.240867   0.720774  0.331573  0.549766
   2 │ 0.225226   0.241412   0.0793279  0.418206  0.775367  0.35275
   3 │ 0.19913    0.0633375  0.767805   0.280096  0.721995  0.917259
   4 │ 0.708132   0.230088   0.702677   0.947402  0.928979  0.66101
   5 │ 0.0267573  0.0122425  0.549734   0.331788  0.32658   0.00476749

julia> df3 = df2
5×6 DataFrame
 Row │ x1         x2         x3         x4        x5        x6
     │ Float64    Float64    Float64    Float64   Float64   Float64
─────┼─────────────────────────────────────────────────────────────────
   1 │ 0.364225   0.690894   0.240867   0.720774  0.331573  0.549766
   2 │ 0.225226   0.241412   0.0793279  0.418206  0.775367  0.35275
   3 │ 0.19913    0.0633375  0.767805   0.280096  0.721995  0.917259
   4 │ 0.708132   0.230088   0.702677   0.947402  0.928979  0.66101
   5 │ 0.0267573  0.0122425  0.549734   0.331788  0.32658   0.00476749

julia> df2 .= log.(df)
5×6 DataFrame
 Row │ x1         x2         x3         x4          x5          x6
     │ Float64    Float64    Float64    Float64     Float64     Float64
─────┼─────────────────────────────────────────────────────────────────────
   1 │ -1.00998   -0.369769  -1.42351   -0.32743    -1.10391    -0.598262
   2 │ -1.49065   -1.42125   -2.53417   -0.87178    -0.254419   -1.04199
   3 │ -1.6138    -2.75928   -0.26422   -1.27262    -0.325737   -0.0863653
   4 │ -0.345124  -1.46929   -0.352858  -0.0540319  -0.0736689  -0.413987
   5 │ -3.62095   -4.40285   -0.598321  -1.10326    -1.11908    -5.34594

julia> df2 === df3
true

Note that with the last check I made sure that indeed the df2 .= log.(df) was in-place. We updated the contents of df2, and not created a new object.

However, sometimes things are more tricky. Consider the df .> 0.5 operation we did above:

julia> df2 .= df .> 0.5
5×6 DataFrame
 Row │ x1       x2       x3       x4       x5       x6
     │ Float64  Float64  Float64  Float64  Float64  Float64
─────┼──────────────────────────────────────────────────────
   1 │     0.0      1.0      0.0      1.0      0.0      1.0
   2 │     0.0      0.0      0.0      0.0      1.0      0.0
   3 │     0.0      0.0      1.0      0.0      1.0      1.0
   4 │     1.0      0.0      1.0      1.0      1.0      1.0
   5 │     0.0      0.0      1.0      0.0      0.0      0.0

Note that there is a difference from creating a new data frame with df .> 0.5. The issue is that columns of df2 keep their original types. This is expected, as we wanted a fully in-place operation. However, sometimes you might want to change the element type of a column when doing broadcasting. This is possible, however, then you need to use data frame indexing with a special ! row selector which signals that column replacement is requested:

julia> df2[!, :] .= df .> 0.5
5×6 DataFrame
 Row │ x1     x2     x3     x4     x5     x6
     │ Bool   Bool   Bool   Bool   Bool   Bool
─────┼──────────────────────────────────────────
   1 │ false   true  false   true  false   true
   2 │ false  false  false  false   true  false
   3 │ false  false   true  false   true   true
   4 │  true  false   true   true   true   true
   5 │ false  false   true  false  false  false

julia> df3
5×6 DataFrame
 Row │ x1     x2     x3     x4     x5     x6
     │ Bool   Bool   Bool   Bool   Bool   Bool
─────┼──────────────────────────────────────────
   1 │ false   true  false   true  false   true
   2 │ false  false  false  false   true  false
   3 │ false  false   true  false   true   true
   4 │  true  false   true   true   true   true
   5 │ false  false   true  false  false  false

Indeed we got what we wanted. I showed df3 variable to convince you that still all operations were done on the same data frame object and df2 and df3 are still pointing to it.

Let me give an example where the difference between in-place and column replace operations particularly matters and is a common surprise for new users. It is a case when we want to introduce missing values to a column that initially does not allow them.

julia> df2 = copy(df)
5×6 DataFrame
 Row │ x1         x2         x3         x4        x5        x6
     │ Float64    Float64    Float64    Float64   Float64   Float64
─────┼─────────────────────────────────────────────────────────────────
   1 │ 0.364225   0.690894   0.240867   0.720774  0.331573  0.549766
   2 │ 0.225226   0.241412   0.0793279  0.418206  0.775367  0.35275
   3 │ 0.19913    0.0633375  0.767805   0.280096  0.721995  0.917259
   4 │ 0.708132   0.230088   0.702677   0.947402  0.928979  0.66101
   5 │ 0.0267573  0.0122425  0.549734   0.331788  0.32658   0.00476749

julia> df2 .= ifelse.(df .> 0.5, missing, df)
ERROR: MethodError: Cannot `convert` an object of type Missing to an object of type Float64

julia> df2[!, :] .= ifelse.(df .> 0.5, missing, df)
5×6 DataFrame
 Row │ x1               x2               x3               x4              x5              x6
     │ Float64?         Float64?         Float64?         Float64?        Float64?        Float64?
─────┼─────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │       0.364225   missing                0.240867   missing               0.331573  missing
   2 │       0.225226         0.241412         0.0793279        0.418206  missing               0.35275
   3 │       0.19913          0.0633375  missing                0.280096  missing         missing
   4 │ missing                0.230088   missing          missing         missing         missing
   5 │       0.0267573        0.0122425  missing                0.331788        0.32658         0.00476749

Note that df2 originally does not allow missing values in any of the columns. Therefore df2 .= ifelse.(df .> 0.5, missing, df) fails. However, replacing df2 .= by df2[!, :] .= works, because the ! selector explicitly requests overwriting the original columns with new ones, possibly changing their types.

Conclusions

I hope you found these examples useful and they will help you to work with DataFrames.jl more easily and confidently.

As a final comment let me explain why df2 .= ifelse.(df .> 0.5, missing, df) is fully in-place (and does not replace the columns with proper element types like df2[!, :] .=) as this is a common question. There are three reasons for this:

  • performance: a fully in-place operation is faster and allocates less;
  • safety: in production code we might want to make sure that the type of a column is not changed by mistake;
  • design consistency: the operation was designed to work the same way as broadcasting on matrices (broadcasted assignment used with a matrix does allow to change its element type).