Introduction

Operation specification syntax in DataFrames.jl is used to pass information how functions like select, transform, or combine should process data frames or grouped data frames.

If you have never used it I recommend you to first read an introductory post about it.

Today I want to discuss what additions to operation specification language we made in DataFrames.jl 1.4.

The presented code was tested under Julia 1.8.2 and DataFrames.jl 1.4.2.

Preliminaries

Operation specification syntax is built around ETL (extract-transform-load) process, that you might know from data integration. Its general form is:

[source columns] => [operation] => [target columns names]

Here is a simple example:

julia> using DataFrames

julia> df = DataFrame(customer=[1, 1, 2, 2, 2, 3],
                      transaction_id=1:6,
                      volume=[2, 3, 1, 4, 5, 9])
6×3 DataFrame
 Row │ customer  transaction_id  volume
     │ Int64     Int64           Int64
─────┼──────────────────────────────────
   1 │        1               1       2
   2 │        1               2       3
   3 │        2               3       1
   4 │        2               4       4
   5 │        2               5       5
   6 │        3               6       9

julia> combine(df, :volume => sum => :total_volume)
1×1 DataFrame
 Row │ total_volume
     │ Int64
─────┼──────────────
   1 │           24

julia> combine(groupby(df, :customer), :volume => sum => :total_volume)
3×2 DataFrame
 Row │ customer  total_volume
     │ Int64     Int64
─────┼────────────────────────
   1 │        1             5
   2 │        2            10
   3 │        3             9

In these examples we first aggregated volume column to get total volume for the whole data frame, and next we computed total volume per customer.

In both cases we used the same operation specification syntax:

:volume => sum => :total_volume

Which says:

  • extract column :volume;
  • transform it using sum;
  • load it to :total_volume column.

However, there are cases when there is no natural source column on which we might want to perform computations. One of such common cases is getting the number of rows per group. For this special case we have a short syntax nrow or nrow => [target column] to compute number of rows in a data frame or in each group of a data frame. Notice that there is no extract part in this syntax as number of rows is not a property of a specific column, but of a data frame as a whole.

Here is an example how it works:

julia> combine(df, nrow)
1×1 DataFrame
 Row │ nrow
     │ Int64
─────┼───────
   1 │     6

julia> combine(groupby(df, :customer), nrow => :transactions_per_customer)
3×2 DataFrame
 Row │ customer  transactions_per_customer
     │ Int64     Int64
─────┼─────────────────────────────────────
   1 │        1                          2
   2 │        2                          3
   3 │        3                          1

There are three other common operations that have the same nature:

  • adding a column with row number;
  • adding a column with group number (makes sense only for working with grouped data frame);
  • computing fraction of rows (also for grouped data frames only).

In DataFrames.jl 1.4 these three operations are now supported through eachindex, groupindices, and proprow operations. Let me show you how they work.

Adding a column with row number

This is the simplest functionality. The eachindex operation adds row number in a data frame or per group in a grouped data frame. Here is an example:

julia> combine(df, eachindex, :transaction_id)
6×2 DataFrame
 Row │ eachindex  transaction_id
     │ Int64      Int64
─────┼───────────────────────────
   1 │         1               1
   2 │         2               2
   3 │         3               3
   4 │         4               4
   5 │         5               5
   6 │         6               6

julia> combine(groupby(df, :customer),
               eachindex => :transaction_number,
               :transaction_id)
6×3 DataFrame
 Row │ customer  transaction_number  transaction_id
     │ Int64     Int64               Int64
─────┼──────────────────────────────────────────────
   1 │        1                   1               1
   2 │        1                   2               2
   3 │        2                   1               3
   4 │        2                   2               4
   5 │        2                   3               5
   6 │        3                   1               6

Note that when we work on a whole data frame we got the same column as :transaction_id. However, when working on a grouped data frame we got transaction numbers per customer.

Adding a column with group number

The eachindex operation added row within group. So it is natural to ask for a function that does produce a group number. The groupindices operation is designed to achieve this goal. Here is an example:

julia> combine(groupby(df, :customer), groupindices)
3×2 DataFrame
 Row │ customer  groupindices
     │ Int64     Int64
─────┼────────────────────────
   1 │        1             1
   2 │        2             2
   3 │        3             3

julia> combine(groupby(df, :customer), groupindices => :customer_id, :customer)
6×2 DataFrame
 Row │ customer  customer_id
     │ Int64     Int64
─────┼───────────────────────
   1 │        1            1
   2 │        1            1
   3 │        2            2
   4 │        2            2
   5 │        2            2
   6 │        3            3

Note that in our example the produced numbers are the same as values in the customer column. However, in general it does not have to be the case. Let us subset the grouped data frame before the operation:

julia> gdf = groupby(df, :customer)[[3, 2]]
GroupedDataFrame with 2 groups based on key: customer
First Group (1 row): customer = 3
 Row │ customer  transaction_id  volume
     │ Int64     Int64           Int64
─────┼──────────────────────────────────
   1 │        3               6       9
⋮
Last Group (3 rows): customer = 2
 Row │ customer  transaction_id  volume
     │ Int64     Int64           Int64
─────┼──────────────────────────────────
   1 │        2               3       1
   2 │        2               4       4
   3 │        2               5       5

julia> combine(gdf, groupindices)
2×2 DataFrame
 Row │ customer  groupindices
     │ Int64     Int64
─────┼────────────────────────
   1 │        3             1
   2 │        2             2

As you can see groupindices returns the number of a group within the grouped data frame.

As I have mentioned earlier this operation is not supported for data frames:

julia> combine(df, groupindices)
ERROR: ArgumentError: groupindices only supports `GroupedDataFrame` as an
argument. Additionally it can be used in transformation functions (combine,
select, etc.) when processing a `GroupedDataFrame`, using the syntax
`groupindices => target_col_name` or just `groupindices`

Computing the fraction of rows per group

DataFrames.jl supports nrow convenience function for a long time already as it was a common use case that users needed. An almost as frequent use-case is to get a faction of rows per group. This can be achieved using the proprow operation:

julia> combine(groupby(df, :customer), nrow, proprow)
3×3 DataFrame
 Row │ customer  nrow   proprow
     │ Int64     Int64  Float64
─────┼───────────────────────────
   1 │        1      2  0.333333
   2 │        2      3  0.5
   3 │        3      1  0.166667

julia> combine(groupby(df, :customer), nrow => :count, proprow => :proportion)
3×3 DataFrame
 Row │ customer  count  proportion
     │ Int64     Int64  Float64
─────┼─────────────────────────────
   1 │        1      2    0.333333
   2 │        2      3    0.5
   3 │        3      1    0.166667

Similarly to groupindices the proprow operation is only supported for grouped data frames:

julia> combine(df, proprow)
ERROR: ArgumentError: proprow can only be used in transformation functions
(combine, select, etc.) when processing a `GroupedDataFrame`, using the syntax
`proprow => target_col_name` or just `proprow`

Conclusions

I hope you will find the eachindex, groupindices and proprow operations useful in your daily data wrangling with DataFrames.jl.