Introduction

In this post I want to introduce two features of DataFrames.jl that will be added in 1.4 release that are already available on main branch. The new additions are:

  • extensions of the transformation mini-language;
  • pivot table functionality of the unstack function.

The post was written under Julia 1.7.0 and DataFrames.jl current main branch, and DataFramesMeta.jl 0.10.

Environment setup

Since we want to work on a main branch we set it up first:

(@v1.7) pkg> add DataFrames#main
    Updating git-repo `https://github.com/JuliaData/DataFrames.jl.git`
    Updating registry at `~/.julia/registries/General`
    Updating git-repo `https://github.com/JuliaRegistries/General.git`
   Resolving package versions...
    Updating `~/.julia/environments/v1.7/Project.toml`
  [a93c6f00] ~ DataFrames v1.3.2 ⇒ v1.4.0 `https://github.com/JuliaData/DataFrames.jl.git#main`
    Updating `~/.julia/environments/v1.7/Manifest.toml`
  [a93c6f00] ~ DataFrames v1.3.2 ⇒ v1.4.0 `https://github.com/JuliaData/DataFrames.jl.git#main`
Precompiling project...
  2 dependencies successfully precompiled in 20 seconds (47 already precompiled)

julia> using DataFrames

Extensions of the transformation mini-language

In DataFrames.jl 1.3 the nrow function has a special syntax as it does not require passing source column (but optionally allows specifying output column name) and returns the number of rows in a data frame or grouped data frame. Here is an example:

julia> df = DataFrame(year=repeat([2020, 2021]; outer=3),
                      region=repeat(["north", "center", "south"]; inner=2),
                      sales=[500, 600, 700, 550, 630, 680])
6×3 DataFrame
 Row │ year   region  sales
     │ Int64  String  Int64
─────┼──────────────────────
   1 │  2020  north     500
   2 │  2021  north     600
   3 │  2020  center    700
   4 │  2021  center    550
   5 │  2020  south     630
   6 │  2021  south     680

julia> gdf = groupby(df, :year)
GroupedDataFrame with 2 groups based on key: year
First Group (3 rows): year = 2020
 Row │ year   region  sales
     │ Int64  String  Int64
─────┼──────────────────────
   1 │  2020  north     500
   2 │  2020  center    700
   3 │  2020  south     630
⋮
Last Group (3 rows): year = 2021
 Row │ year   region  sales
     │ Int64  String  Int64
─────┼──────────────────────
   1 │  2021  north     600
   2 │  2021  center    550
   3 │  2021  south     680

julia> combine(df, nrow)
1×1 DataFrame
 Row │ nrow
     │ Int64
─────┼───────
   1 │     6

julia> combine(gdf, nrow => :region_count)
2×2 DataFrame
 Row │ year   region_count
     │ Int64  Int64
─────┼─────────────────────
   1 │  2020             3
   2 │  2021             3

In DataFrames.jl 1.4 three more functions having the same special handling are going to be added. They are:

  • eachindex: returning row number in a data frame or in group of grouped data frame;
  • proprow: returning proportion of rows in group (only supported for grouped data frame);
  • groupindices: returning group number (only supported for grouped data frame);

As you can see none of these functions require passing a concrete source column to know how to produce their result and this is the reason why they follow the non-standard syntax.

Let me show you how they work by example. Start with eachindex:

julia> transform(df, eachindex)
6×4 DataFrame
 Row │ year   region  sales  eachindex
     │ Int64  String  Int64  Int64
─────┼─────────────────────────────────
   1 │  2020  north     500          1
   2 │  2021  north     600          2
   3 │  2020  center    700          3
   4 │  2021  center    550          4
   5 │  2020  south     630          5
   6 │  2021  south     680          6

julia> transform(gdf, eachindex => :row_number)
6×4 DataFrame
 Row │ year   region  sales  row_number
     │ Int64  String  Int64  Int64
─────┼──────────────────────────────────
   1 │  2020  north     500           1
   2 │  2021  north     600           1
   3 │  2020  center    700           2
   4 │  2021  center    550           2
   5 │  2020  south     630           3
   6 │  2021  south     680           3

Note, that in the second example the returned row indices are within-group.

Now let us see how proprow and groupindices work. As I have noted above they are only supported for GroupedDataFrame:

julia> combine(gdf, groupindices => :group_number, proprow)
2×3 DataFrame
 Row │ year   group_number  proprow
     │ Int64  Int64         Float64
─────┼──────────────────────────────
   1 │  2020             1      0.5
   2 │  2021             2      0.5

Let us use the proprow function to check the distribution of sum of two tosses using standard six-sided dice additionally using DataFramesMeta.jl:

julia> using Random

julia> using DataFramesMeta

julia> Random.seed!(1234);

julia> @chain DataFrame(res=rand(1:6, 10^8) + rand(1:6, 10^8)) begin
           groupby(:res)
           @combine(:empirical = $proprow)
           @rtransform(:theoretical = (6 - abs(7 - :res)) / 36)
       end
11×3 DataFrame
 Row │ res    empirical  theoretical
     │ Int64  Float64    Float64
─────┼───────────────────────────────
   1 │     2  0.0277863    0.0277778
   2 │     3  0.0555783    0.0555556
   3 │     4  0.0832717    0.0833333
   4 │     5  0.111112     0.111111
   5 │     6  0.138934     0.138889
   6 │     7  0.166655     0.166667
   7 │     8  0.138885     0.138889
   8 │     9  0.111094     0.111111
   9 │    10  0.0833185    0.0833333
  10 │    11  0.0555788    0.0555556
  11 │    12  0.0277863    0.0277778

Pivot table functionality of the unstack function

The second upcoming functionality is addition of valuestransform keyword argument to unstack. It allows you to create pivot tables. Start with generating some table we might want to aggregate:

julia> Random.seed!(1234);

julia> sales_df = DataFrame(year=rand(2020:2021, 100),
                            region=rand(["north", "center", "south"], 100),
                            sales=rand(100))
100×3 DataFrame
 Row │ year   region  sales
     │ Int64  String  Float64
─────┼──────────────────────────
   1 │  2020  center  0.558861
   2 │  2021  center  0.122447
   3 │  2020  north   0.20889
  ⋮  │   ⋮      ⋮         ⋮
  98 │  2020  center  0.983299
  99 │  2020  north   0.882375
 100 │  2021  south   0.232082
                 94 rows omitted

julia> transform!(groupby(sales_df, [:year, :region]), eachindex => :store_id)
100×4 DataFrame
 Row │ year   region  sales      store_id
     │ Int64  String  Float64    Int64
─────┼────────────────────────────────────
   1 │  2020  center  0.558861          1
   2 │  2021  center  0.122447          1
   3 │  2020  north   0.20889           1
  ⋮  │   ⋮      ⋮         ⋮         ⋮
  98 │  2020  center  0.983299         13
  99 │  2020  north   0.882375         12
 100 │  2021  south   0.232082         19
                           94 rows omitted

I have generated the :store_id column that gives us store identifier per year and region as an exercise of eachindex usage.

What we want to get is a pivot table showing us total sales by year and region.

Traditionally you would do it like this:

julia> combine(groupby(sales_df, [:year, :region]), :sales => sum => :total_sales)
6×3 DataFrame
 Row │ year   region  total_sales
     │ Int64  String  Float64
─────┼────────────────────────────
   1 │  2020  center      7.25926
   2 │  2021  center      6.00744
   3 │  2020  north       7.10255
   4 │  2021  south       7.53942
   5 │  2020  south       9.35856
   6 │  2021  north      10.7248

and later use unstack on the result like this:

julia> @chain sales_df begin
           groupby([:year, :region])
           combine(:sales => sum => :total_sales)
           unstack(:region, :year, :total_sales)
       end
3×3 DataFrame
 Row │ region  2020      2021
     │ String  Float64?  Float64?
─────┼────────────────────────────
   1 │ center   7.25926   6.00744
   2 │ north    7.10255  10.7248
   3 │ south    9.35856   7.53942

Now you can do it in one step with valuestransform keyword argument to unstack which allows you to pass aggregation function you want to apply to the unstacked data:

julia> unstack(sales_df, :region, :year, :sales; valuestransform=sum)
3×3 DataFrame
 Row │ region  2020      2021
     │ String  Float64?  Float64?
─────┼────────────────────────────
   1 │ center   7.25926   6.00744
   2 │ north    7.10255  10.7248
   3 │ south    9.35856   7.53942

Let us now perform a bit more complex transformation:

julia> @chain sales_df begin
           @rtransform(:region_year = string(:region, "_", :year))
           unstack(:store_id, :region_year, :sales; valuestransform=sum, fill=0.0)
       end
20×7 DataFrame
 Row │ store_id  center_2020  center_2021  north_2020  south_2021  south_2020  north_2021
     │ Int64     Float64      Float64      Float64     Float64     Float64     Float64
─────┼────────────────────────────────────────────────────────────────────────────────────
   1 │        1    0.558861     0.122447     0.20889    0.143436    0.329521   0.866798
   2 │        2    0.0380815    0.309235     0.034361   0.552426    0.310385   0.959957
   3 │        3    0.516981     0.261204     0.95434    0.413821    0.104218   0.199257
   4 │        4    0.0618067    0.075524     0.099118   0.706231    0.217979   0.370522
   5 │        5    0.0507147    0.275146     0.328642   0.975947    0.677177   0.00706048
   6 │        6    0.732012     0.0207132    0.991149   0.620299    0.814166   0.531297
   7 │        7    0.204139     0.931495     0.832146   0.201035    0.554558   0.759341
   8 │        8    0.799132     0.194907     0.731654   0.234099    0.67543    0.194442
   9 │        9    0.831656     0.894577     0.694614   0.0841972   0.339449   0.164982
  10 │       10    0.979482     0.057445     0.826054   0.177784    0.858287   0.529903
  11 │       11    0.989703     0.568018     0.519209   0.185454    0.0682582  0.315405
  12 │       12    0.513391     0.573917     0.882375   0.294397    0.465337   0.426687
  13 │       13    0.983299     0.0552395    0.0        0.145345    0.55148    0.630227
  14 │       14    0.0          0.6342       0.0        0.627799    0.0697159  0.83729
  15 │       15    0.0          0.435403     0.0        0.743466    0.756869   0.940755
  16 │       16    0.0          0.102038     0.0        0.641528    0.867504   0.978431
  17 │       17    0.0          0.495932     0.0        0.236       0.436487   0.937941
  18 │       18    0.0          0.0          0.0        0.324075    0.955728   0.241034
  19 │       19    0.0          0.0          0.0        0.232082    0.248491   0.833433
  20 │       20    0.0          0.0          0.0        0.0         0.0575235  0.0

Here, I have shown you the fill keyword argument that is used to provide value that should be used in cases we do not have any data for some combination of row and column keys (by default such cells are filled with missing).

Conclusions

I hope you will find these upcoming functionalities useful. If you have any questions or comments regarding them please open an issue on DataFrames.jl repository.